بسم الله الرحمن الرحيم

تئوری جامع ماشینهای الکتریکی مدرس: دکتر عباس کتابی

مراجع درس:

- "Analysis of Electric Machinery and Drive Systems", Third Edition, By: P. C. Krause, O. Wasynczuk and S. D. Sudhoff, IEEE Press, 2013.
- "Electromechanical Motion Devices", Second Edition, By: P. C. Krause, O. Wasynczuk and S. Pekarek, Wiley-IEEE Press, 2012.
- "Dynamic simulation of Electric Machinery using MATLAB", by: Chee-Mun Ong, Prentice Hall PTR, 1997

نحوه ارزشیابی:

تكاليف: 2 نمره

امتحان پایانترم: 13 نمره

پروژه: 5 نمره

مطالب درس:

- Reference Frame Theory
- 3-Phase Induction Machines
- Synchronous Machines
- Machine Equations in Operational Impedances and Time Constants
- Linearized Machine Equations
- Reduced Order Machine Equations

Reference Frame Theory

> Power of Reference Frame Theory:

- Eliminates Rotor Position Dependence inductances
- Transforms Nonlinear Systems to Linear Systems for Certain Cases
- Fundamental Tool For Development of Equivalent Circuits
- Can Be Used to Make AC Quantities Become DC Quantities
- Framework of Most Controllers

Reference Frame Theory

▶ History of Reference Frame Theory

- •1929: Park's Transformation
 - Synchronous Machine; Rotor Reference Frame
- •1938: Stanley
 - Induction Machine; Stationary Reference Frame
- •1951:Kron
 - Induction Machine; Synchronous Reference Frame
- •1957: Brereton
 - Induction Machine; Rotor Reference Frame
- •1965: Krause
 - Arbitrary Reference Frame

 Consider stator winding of a 2-pole 3-phase symmetrical machine

Synchronous and induction machine **inductances** are **functions of the rotor speed**, therefore the coefficients of the differential equations (voltage equations) which describe the behavior of these machines are **time-varying**.

A change of variables can be used to reduce the complexity of machine differential equations, and represent these equations in another reference frame with constant coefficients.

■ A change of variables which formulates a transformation of the 3-phase variables of stationary circuit elements to the arbitrary reference frame may be expressed

$$\mathbf{f}_{qd0s} = \mathbf{K}_s \mathbf{f}_{abcs}$$

$$\mathbf{K}_{s} = \frac{2}{3} \begin{bmatrix} \cos\theta & \cos(\theta - \frac{2\pi}{3}) & \cos(\theta + \frac{2\pi}{3}) \\ \sin\theta & \sin(\theta - \frac{2\pi}{3}) & \sin(\theta + \frac{2\pi}{3}) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

where, $(\mathbf{f}_{qd0s})^T = \begin{bmatrix} f_{qs} & f_{ds} & f_{0s} \end{bmatrix}$,

$$(\mathbf{f}_{abcs})^T = \begin{bmatrix} f_{as} & f_{bs} & f_{cs} \end{bmatrix}, \qquad \theta = \int_0^t \omega(t) dt + \theta(0).$$

$$(\mathbf{K}_s)^{-1} = \begin{bmatrix} \cos\theta & \sin\theta & 1\\ \cos(\theta - \frac{2\pi}{3}) & \sin(\theta - \frac{2\pi}{3}) & 1\\ \cos(\theta + \frac{2\pi}{3}) & \sin(\theta + \frac{2\pi}{3}) & 1 \end{bmatrix}.$$

- "f" can represent either voltage, current, or flux linkage.
- "s" indicates the variables, parameters and transformation associated with stationary circuits.
- " ω " represent the speed of reference frame.

- ω =0: Stationary reference frame.
- $\omega = \omega_e$: synchronoulsy rotaing reference frame.
- $\omega = \omega_r$: rotor reference frame (i.e., the reference frame is fixed on the rotor).

- f_{as} , f_{bs} and f_{cs} may be thought of as the direction of the magnetic axes of the stator windings.
- f_{qs} and f_{ds} can be considered as the direction of the magnetic axes of the "new" fictious windings located on qs and ds axis which are created by the change of variables.
- Power Equations:

$$\begin{split} P_{abcs} &= V_{as} i_{as} + V_{bs} i_{bs} + V_{cs} i_{cs} \\ P_{qd0s} &= P_{abcs} = \frac{3}{2} \left(V_{qs} i_{qs} + V_{ds} i_{ds} + 2 V_{0s} i_{0s} \right) \end{split}$$

- Stationary circuit variables transformed to the arbitrary reference frame.
- Resistive elements: For a 3-phase resistive circuit,

$$V_{abcs} = \overline{r}_{s} i_{abcs}$$

$$\overline{r}_{s} = \begin{bmatrix} r_{s} & 0 & 0 \\ 0 & r_{s} & 0 \\ 0 & 0 & r_{s} \end{bmatrix}$$

$$i_{abcs} = (\mathbf{K}_{s})^{-1} i_{qd0s} \qquad V_{abcs} = (\mathbf{K}_{s})^{-1} V_{qd0s}$$

$$(\mathbf{K}_{s})^{-1} V_{qd0s} = \overline{r}_{s} (\mathbf{K}_{s})^{-1} i_{qd0s}$$

$$V_{qd0s} = (\mathbf{K}_{s}) \overline{r}_{s} (\mathbf{K}_{s})^{-1} i_{qd0s} \qquad , (\mathbf{K}_{s}) \overline{r}_{s} (\mathbf{K}_{s})^{-1} = \overline{r}_{s}$$

$$V_{ad0s} = \overline{r}_{s} i_{ad0s}$$

■ Inductive elements: For a 3-phase inductive circuit,

V_{abcs} =
$$p\lambda_{abcs}$$
,
where, $p = \frac{d}{dt}$,
 $\lambda_{abcs} = \mathbf{L}_s i_{abcs} = \begin{bmatrix} L_s & 0 & 0 \\ 0 & L_s & 0 \\ 0 & 0 & L_s \end{bmatrix} \begin{bmatrix} i_{as} \\ i_{bs} \\ i_{cs} \end{bmatrix}$

In terms of the substitute variables, we have

$$\mathbf{V}_{qd0s} = \mathbf{K}_{s} \cdot p \left[\mathbf{K}_{s}^{-1} \lambda_{qd0s} \right] = \mathbf{K}_{s} \cdot p \left[\mathbf{K}_{s}^{-1} \right] \lambda_{qd0s} + \mathbf{K}_{s} \cdot \left[\mathbf{K}_{s}^{-1} \right] p \lambda_{qd0s}$$

where,
$$p[\mathbf{K}_{s}^{-1}] = \omega \cdot \begin{bmatrix} -\sin\theta & \cos\theta & 0 \\ -\sin(\theta - \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) & 0 \\ -\sin(\theta + \frac{2\pi}{3}) & \cos(\theta + \frac{2\pi}{3}) & 0 \end{bmatrix}$$

After some work, we can show that

$$\mathbf{K}_{s} \cdot p \left[\mathbf{K}_{s}^{-1} \right] = \boldsymbol{\omega} \cdot \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$V_{qd0s} = \mathbf{K}_{s} p[(\mathbf{K}_{s})^{-1}] \lambda_{qd0s} + \mathbf{K}_{s} (\mathbf{K}_{s})^{-1} p \lambda_{qd0s}$$

$$V_{qd0s} = \omega \lambda_{dqs} + p \lambda_{qd0s}$$

$$where, (\lambda_{dqs})^{T} = \begin{bmatrix} \lambda_{ds} & -\lambda_{qs} & 0 \end{bmatrix}$$

• Vector equation V_{qd0s} can be expressed as

$$V_{qs} = \omega \lambda_{ds} + p \lambda_{qs}$$

$$V_{ds} = -\omega \lambda_{qs} + p \lambda_{ds}$$

$$V_{0s} = p \lambda_{0s}$$

where " $\omega \lambda_{ds}$ " term and " $\omega \lambda_{qs}$ " term are referred to as a "speed voltage" with the speed being the angular velocity of the arbitrary reference frame.

- When the reference frame is fixed in the stator, that is, the stationary reference frame (ω =0), the voltage equations for the three-phase circuit become the familiar time rate of change of flux linkage in abcs reference frame
- For the three-phase circuit shown, L_s is a diagonal matrix, and

$$\lambda_{abcs} = \mathbf{L}_s i_{abcs}$$

$$\lambda_{qd0s} = \mathbf{K}_s \mathbf{L}_s \mathbf{K}_s^{-1} i_{qd0s} = \mathbf{L}_s i_{qd0s}$$

■ For the three-phase induction or synchronous machine, L_s matrix is expressed as

$$\mathbf{L}_{s} = \begin{bmatrix} L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & L_{ls} + L_{ms} & -\frac{1}{2}L_{ms} \\ -\frac{1}{2}L_{ms} & -\frac{1}{2}L_{ms} & L_{ls} + L_{ms} \end{bmatrix}$$

where, L_{ls}: leakage inductance, L_{ms}: magnetizing inductance

$$\mathbf{K}_{s}\mathbf{L}_{s}(\mathbf{K}_{s})^{-1} = \begin{bmatrix} \mathbf{L}_{ls} + \frac{3}{2}\mathbf{L}_{ms} & 0 & 0 \\ 0 & \mathbf{L}_{ls} + \frac{3}{2}\mathbf{L}_{ms} & 0 \\ 0 & 0 & \mathbf{L}_{ls} \end{bmatrix}$$

Consider the stator windings of a symmetrical induction or round rotor synchronous machine shown below

■ For each phase voltage, we write the following equations,

$$egin{aligned} V_{as} &= r_s i_{as} + p \lambda_{as} & V_{qd0s} &= \mathbf{K}_s V_{abcs} \ V_{bs} &= r_s i_{bs} + p \lambda_{bs}, & i_{qd0s} &= \mathbf{K}_s i_{abcs} \ V_{cs} &= r_s i_{cs} + p \lambda_{cs} & \lambda_{qd0s} &= \mathbf{K}_s \lambda_{abcs} \ \lambda_{abcs} &= \mathbf{L}_s i_{abcs} \end{aligned}$$

In vector form,

$$V_{abcs} = \mathbf{r}_s i_{abcs} + p \lambda_{abcs},$$

Multiplying by \mathbf{K}_{s}

$$\mathbf{K}_{s}V_{abcs} = \mathbf{K}_{s}\mathbf{r}_{s}i_{abcs} + \mathbf{K}_{s}p\lambda_{abcs}$$

■ Replace i_{abcs} and λ_{abcs} using the transformation equations,

$$\mathbf{K}_{s}V_{abcs} = \mathbf{K}_{s}\mathbf{r}_{s}(\mathbf{K}_{s}^{-1}i_{qd0s}) + \mathbf{K}_{s}p(\mathbf{K}_{s}^{-1}\lambda_{qd0s})$$
$$V_{qd0s} = \mathbf{r}_{s}i_{qd0s} + \overline{\omega}\overline{\lambda}_{qd0s}$$

or

$$\begin{aligned} V_{qs} &= r_s i_{qs} + \omega \lambda_{ds} + p \lambda_{qs} \\ V_{ds} &= r_s i_{ds} - \omega \lambda_{qs} + p \lambda_{ds} \\ V_{0s} &= r_s i_{0s} + p \lambda_{0s} \end{aligned}$$

$$V_{ds} = r_{s}i_{ds} - \omega\lambda_{qs} + p\lambda_{ds} V_{0s} = r_{s}i_{0s} + p\lambda_{0s}$$

$$K_{s}L_{s}(K_{s})^{-1} = \begin{bmatrix} L_{s} - M & 0 & 0 \\ 0 & L_{s} - M & 0 \\ 0 & 0 & L_{s} + 2M \end{bmatrix}$$

where,
$$\overline{\omega} = \omega \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\lambda_{qs} = (L_s - M)i_{qs}$$
$$\lambda_{ds} = (L_s - M)i_{ds}$$
$$\lambda_{0s} = (L_s + 2M)i_{0s}$$

 Our equivalent circuit in arbitrary reference frame can be represented as

Commonly used reference frame

■ ω =unspecified: stationary circuit variables referred to the arbitrary reference frame. The variables are referred to as f_{qd0s} or f_{qs} , f_{ds} and f_{0s} and transformation matrix is designated as K_s .

■ ω =0: stationary circuit variables referred to the stationary reference frame. The variables are referred to as f_{qd0s}^s or f_{qs}^s , f_{ds}^s and f_{0s}^s and transformation matrix is designated as K_s^s .

• $\omega = \omega_r$: stationary circuit variables referred to the reference frame fixed in the rotor. The variables are referred to as f^r_{qd0s} or f^r_{qs} , f^r_{ds} and f^r_{0s} and transformation matrix is designated as K^r_s .

• $\omega = \omega_e$: stationary circuit variables referred to the synchronously rotating reference frame. The variables are referred to as f_{qd0s}^e or f_{qs}^e , f_{ds}^e and f_{0s}^e and transformation matrix is designated as K_s^e .

Representation

Stationary reference frame
$$f_{qd0s}^{s}$$
 q-d axes of stator variables

Reference frame fixed on the rotor with speed of
$$\omega_{\rm r}$$
 q-d axes of stator variables, $\theta_{\rm r} = \int_0^t \omega_{\rm r}(t) dt$

Synchronously rotating reference frame
$$f_{qd\,0s}^{\,e}$$
 q-d axes of stator variables, $\theta_e = \int_0^t \omega_e(t) dt$

Transformation of a Balanced Set

■ Consider a 3-phase circuit which is excited by a balanced 3-phase voltage set. Assume the balanced set is a set of equal amplitude sinusoidal quantities which are displaced by 120°.

$$\begin{split} f_{as} &= \sqrt{2} f_s \cos \theta_{ef} \\ f_{bs} &= \sqrt{2} f_s \cos(\theta_{ef} - \frac{2\pi}{3}) \\ f_{cs} &= \sqrt{2} f_s \cos(\theta_{ef} - \frac{2\pi}{3}) \\ \theta_{ef} &= \int_0^t \omega_e(t) dt + \theta_{ef}(0) \end{split}$$

• θ_{ef} : Angular position of each electrical variable (voltage, current, and flux linkage) is θ_{ef} with the f subscript used to denote the specific electrical variable.

Transformation of a Balanced Set

- θ_e : Angular position of the synchronously rotating reference frame is θ_e .
- θ_e and θ_{ef} differ only in the zero position $\theta_e(0)$ and $\theta_{ef}(0)$, since each has the same angular velocity of ω_e .
- f_{as} , f_{bs} and f_{cs} can be transformed to the arbitrary reference frame,

$$\bar{f}_{qd0s} = \overline{\mathbf{K}}_s \bar{f}_{abcs}$$

Transformation of a Balanced Set

After transformation, we will have,

$$f_{qs} = \sqrt{2} f_s \cos(\theta_{ef} - \theta)$$

$$f_{ds} = -\sqrt{2} f_s \sin(\theta_{ef} - \theta)$$

$$f_{0s} = 0$$

• qs and ds variables form a balanced 2-phase set in all reference frames except when $\omega = \omega_e$,

$$f_{qs}^{e} = \sqrt{2} f_s \cos \left[\theta_{ef}(0) - \theta_e(0)\right]$$
$$f_{ds}^{e} = -\sqrt{2} f_s \sin \left[\theta_{ef}(0) - \theta_e(0)\right]$$

In qs^e and ds^e reference frame, sinusoidal quantities appear as constant dc quantities.

For balanced steady-state conditions ω_e is constant and sinusoidal quantities can be represented as phasor variables.

$$F_{as} = \sqrt{2}F_s \cos\left[\omega_e t + \theta_{ef}(0)\right] = \operatorname{Re}\left[\sqrt{2}F_s e^{j\theta_{ef}(0)} e^{j\omega_e t}\right]$$

$$F_{bs} = \sqrt{2}F_s \cos\left[\omega_e t + \theta_{ef}(0) - \frac{2\pi}{3}\right] = \operatorname{Re}\left[\sqrt{2}F_s e^{j\left(\theta_{ef}(0) - \frac{2\pi}{3}\right)} e^{j\omega_e t}\right]$$

$$F_{bs} = \sqrt{2}F_s \cos\left[\omega_e t + \theta_{ef}(0) + \frac{2\pi}{3}\right] = \operatorname{Re}\left[\sqrt{2}F_s e^{j\left(\theta_{ef}(0) + \frac{2\pi}{3}\right)} e^{j\omega_e t}\right]$$

Balanced steady-state qs-ds variables are,

$$F_{qs} = \sqrt{2}F_s \cos\left[\left(\omega_e - \omega\right)t + \theta_{ef}(0) - \theta(0)\right]$$
$$= \operatorname{Re}\left[\sqrt{2}F_s e^{j\left(\theta_{ef}(0) - \theta(0)\right)} e^{j\left(\omega_e - \omega\right)t}\right]$$

$$F_{ds} = -\sqrt{2}F_s \sin\left[\left(\omega_e - \omega\right)t + \theta_{ef}(0) - \theta(0)\right]$$
$$= \operatorname{Re}\left[j\sqrt{2}F_s e^{j\left(\theta_{ef}(0) - \theta(0)\right)} e^{j\left(\omega_e - \omega\right)t}\right]$$

 \blacksquare f_{as} phasor can be expressed as

$$\tilde{F}_{as} = F_s e^{j\theta_{ef}(0)}$$

Balanced Steady-State Phasor Relationships

■ For arbitrary reference frame $(\omega \neq \omega_e)$,

$$\widetilde{F}_{qs} = F_s e^{j(\theta_{ef}(0) - \theta(0))}, \quad \widetilde{F}_{ds} = j\widetilde{F}_{qs}$$

• Selecting $\theta(0)=0$,

$$\widetilde{F}_{as} = \widetilde{F}_{qs}$$

Thus, in all asynchronously rotating reference frame $(\omega \neq \omega_e)$ with $\theta(0)=0$, the phasor representing the *as* variables is equal to the phasor representing the *qs* variables.

In the synchronously rotating reference frame $\omega = \omega_e$, F_{qs}^e and F_{ds}^e can be expressed as

$$F^{e}_{qs} = \text{Re}\left[\sqrt{2}F_{s}e^{j\left(\theta_{ef}(0) - \theta(0)\right)}\right]$$

$$F^{e}_{ds} = \operatorname{Re}\left[j\sqrt{2}F_{s}e^{j\left(\theta_{ef}(0)-\theta(0)\right)}\right]$$

• Let $\theta_e(0)=0$, then

$$F^{e}_{qs} = \sqrt{2}F_{s}\cos(\theta_{ef}(0)), F^{e}_{ds} = -\sqrt{2}F_{s}\sin(\theta_{ef}(0))$$

$$\sqrt{2}\tilde{F}_{as} = F^{e}_{qs} - jF^{e}_{ds}$$
since, $\tilde{F}_{as} = F_{s}e^{j(\theta_{ef}(0))} = F_{s}\cos(\theta_{ef}(0)) + jF_{s}\sin(\theta_{ef}(0))$

Balanced Steady-State Phasor Relationships

 Consider the stator winding of a symmetrical induction machine.

Assume the stator winding is excited by a balanced 3phase sinusoidal voltage set.

Balanced Steady-State Phasor Relationships

- For phase as, we will have $\left(p = \frac{d}{dt}\right)$ $V_{as} = r_s i_{as} + L_s p i_{as} + M p i_{bs} + M p i_{cs}$
- For balanced conditions

$$V_{as} + V_{bs} + V_{cs} = 0$$
, $i_{as} + i_{bs} + i_{cs} = 0$
 $Mpi_{as} = -Mp(i_{bs} + i_{cs})$, $V_{as} = r_s i_{as} + (L_s - M)pi_{as}$

• For steady-state conditions, $p = j\omega_e$

$$\widetilde{V}_{as} = r_s \widetilde{I}_{as} + [(L_s - M)j\omega_e]\widetilde{I}_{as}$$

qs and ds voltage equations in the arbitrary reference frame can be written as

$$\begin{aligned} V_{qs} &= r_s i_{qs} + \omega \lambda_{ds} + p \lambda_{qs} \\ V_{ds} &= r_s i_{ds} - \omega \lambda_{qs} + p \lambda_{ds} \\ \lambda_{qs} &= (L_s - M)i_{qs}, \quad \lambda_{ds} = (L_s - M)i_{ds} \end{aligned}$$

Let $\omega = \omega_e$, then

$$V_{qs}^{e} = r_{s}i_{qs}^{e} + \omega_{e}\lambda_{ds}^{e} + p\lambda_{qs}^{e}$$

$$V_{ds}^{e} = r_{s}i_{ds}^{e} - \omega_{e}\lambda_{qs}^{e} + p\lambda_{ds}^{e}$$

$$\lambda_{qs}^{e} = (L_{s} - M)i_{qs}^{e}, \quad \lambda_{ds}^{e} = (L_{s} - M)i_{ds}^{e}$$

For balanced steady-state conditions, the variables in the synchronously rotating reference frame are constants, therefore $p\lambda_{qs}^e$ and $p\lambda_{ds}^e$ are zero. Therefore, the above can be expressed as

$$V_{qs}^{e} = r_s I_{qs}^{e} + \omega_e (L_s - M) I_{ds}^{e}$$

$$V_{ds}^{e} = r_s I_{ds}^{e} - \omega_e (L_s - M) I_{qs}^{e}$$

Recall
$$\sqrt{2}\tilde{F}_{as} = F^e_{qs} - jF^e_{ds}$$

$$\blacksquare \text{ Thus, } \sqrt{2}\widetilde{V}_{as} = V^e{}_{qs} - jV^e{}_{ds}$$

Balanced Steady-State Phasor Relationships

$$\sqrt{2}\tilde{V}_{as} = r_{s}I^{e}_{qs} + \omega_{e}(L_{s} - M)I^{e}_{ds} - j[r_{s}I^{e}_{ds} + \omega_{e}(L_{s} - M)I^{e}_{qs}]$$

Now

$$\sqrt{2}\widetilde{I}_{as} = I^{e}_{qs} - jI^{e}_{ds}$$
$$j\sqrt{2}\widetilde{I}_{as} = I^{e}_{ds} + jI^{e}_{qs}$$

Substituting in the above equation, we will have

$$\widetilde{V}_{as} = [r_s + j\omega_e(L_s - M)]\widetilde{I}_{as}$$

qd · Transformation to Shunt Capacitances

qd · Transformation to Shunt Capacitances

Suppose Following Voltages Applied to 3 Phase Wye-Connected RL Circuit:

$$\triangleright v_{as} = \sqrt{2}V_s \cos \omega_e t$$

$$> v_{bs} = \sqrt{2}V_s \cos\left(\omega_e t - \frac{2\pi}{3}\right)$$

$$> v_{cs} = \sqrt{2}V_s \cos\left(\omega_e t + \frac{2\pi}{3}\right)$$

Using Basic Circuit Analysis Techniques

$$i_{as} = \frac{\sqrt{2}V_s}{|Z_s|} \left[-e^{-t/\tau} \cos \alpha + \cos (\omega_e t - \alpha) \right]$$

$$i_{bs} = \frac{\sqrt{2}V_s}{|Z_s|} \left[-e^{-t/\tau} \cos\left(\alpha + \frac{2\pi}{3}\right) + \cos\left(\omega_e t - \alpha - \frac{2\pi}{3}\right) \right]$$

$$i_{cs} = \frac{\sqrt{2}V_s}{|Z_s|} \left[-e^{-t/\tau} \cos\left(\alpha - \frac{2\pi}{3}\right) + \cos\left(\omega_e t - \alpha + \frac{2\pi}{3}\right) \right] > Z_s = r_s + j\omega_e L_s$$

$$> Z_s = r_s + j\omega_e L_s$$

$$\tau = \frac{L_s}{r_s}$$

$$\rightarrow \alpha = \tan^{-1} \frac{\omega_e L_s}{r_s}$$

Transforming to the Synchronous Reference Frame:

$$i_{qs} = \frac{\sqrt{2}V_s}{|Z_s|} \{ -e^{-t/\tau} \cos(\omega t - \alpha) + \cos[(\omega_e - \omega)t - \alpha] \}$$

$$+ i_{ds} = \frac{\sqrt{2}V_s}{|Z_s|} \{ -e^{-t/\tau} \sin(\omega t - \alpha) - \sin[(\omega_e - \omega)t - \alpha] \}$$

■ In Stationary Reference Frame

Figure 3.10-1 Variables of a stationary 3-phase system in the stationary reference frame.

■ In Synchronous Reference Frame

■ In Strange Reference Frame

Figure 3.10-3 Variables of a stationary 3-phase system. First with $\omega = -\omega_e$, then ω is stepped to zero followed by a ramp change in reference frame speed to $\omega = \omega_e$.

Transformation Between Reference Frames

To transform the variables from \underline{x} to \underline{y} reference frame:

$$\mathbf{f}_{qd0s}^{y} = {}^{x}\mathbf{K}^{y}\mathbf{f}_{qd0s}^{x}$$

$$\mathbf{f}_{qd0s}^{x} = \mathbf{K}_{s}^{x}\mathbf{f}_{abcs}$$

$$\mathbf{f}_{qd0s}^{y} = {}^{x}\mathbf{K}^{y}\mathbf{K}_{s}^{x}\mathbf{f}_{abcs}$$

$$\mathbf{f}_{qd0s}^{y} = \mathbf{K}_{s}^{y}\mathbf{f}_{abcs}$$

$${}^{x}\mathbf{K}^{y}\mathbf{K}^{x}_{s} = \mathbf{K}^{y}_{s} \qquad \qquad | \mathbf{K}^{y} = \mathbf{K}^{y}_{s}(\mathbf{K}^{x}_{s})^{-1} |$$

Transformation Between Reference Frames

$$\Box$$

$$\mathbf{K}^{y} = \begin{bmatrix}
\cos(\theta_{y} - \theta_{x}) & -\sin(\theta_{y} - \theta_{x}) & 0 \\
\sin(\theta_{y} - \theta_{x}) & \cos(\theta_{y} - \theta_{x}) & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$({}^{x}\mathbf{K}^{y})^{-1}=({}^{x}\mathbf{K}^{y})^{T}$$

For example:

$$\begin{bmatrix} i_q \\ i_d \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} i_q^s \\ i_d^s \end{bmatrix}$$

Space Vectors

Three-phase voltages

$$v_{An}(t) + v_{Bn}(t) + v_{Cn}(t) = 0$$

Two-phase voltages

$$\begin{bmatrix} v_{\alpha}(t) \\ v_{\beta}(t) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} \cos 0 & \cos \frac{2\pi}{3} & \cos \frac{4\pi}{3} \\ \sin 0 & \sin \frac{2\pi}{3} & \sin \frac{4\pi}{3} \end{bmatrix} \begin{bmatrix} v_{An}(t) \\ v_{Bn}(t) \\ v_{Cn}(t) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_{An}(t) \\ v_{Bn}(t) \\ v_{Cn}(t) \end{bmatrix}$$

Space vector representation

$$\vec{V}(t) = v_{\alpha}(t) + j v_{\beta}(t)$$

$$\vec{V}(t) = \frac{2}{3} \left[v_{An}(t) e^{j0} + v_{Bn}(t) e^{j2\pi/3} + v_{Cn}(t) e^{j4\pi/3} \right]$$

where

$$\left| \vec{V} \right| = \sqrt{V_{\alpha}^2 + V_{\beta}^2}$$

$$\alpha = \tan^{-1}(\frac{V_{\beta}}{V_{\alpha}}) = \omega_s t = 2\pi f_s t$$

